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Basic Probability

Introduction

The world is an uncertain place. Making predictions about
something as seemingly mundane as tomorrow’s weather, for exam-
ple, is actually quite a difficult task. Even with the most advanced
computers and models of the modern era, weather forecasters still
cannot say with absolute certainty whether it will rain tomorrow. The
best they can do is to report their best estimate of the chance that it
will rain tomorrow. For example, if the forecasters are fairly confi-
dent that it will rain tomorrow, they might say that there is a 90%
chance of rain. You have probably heard statements like this your
entire life, but have you ever asked yourself what exactly it means to
say that there is a 90% chance of rain?

Let us consider an even more basic example: tossing a coin. If the
coin is fair, then it is just as likely to come up heads as it is to come
up tails. In other words, if we were to repeatedly toss the coin many
times, we would expect about about half of the tosses to be heads
and and half to be tails. In this case, we say that the probability of
getting a head is 1/2 or 0.5.

Figure 1: The true probability of a head
is 1/2 for a fair coin.

Figure 2: A sequence of 10 flips hap-
pened to contain 3 head. The empirical
frequency of heads is thus 3/10, which
is quite different from 1/2.

Figure 3: A sequence of 100 flips
happened to contain 45 heads. The
empirical frequency of heads is 45/100,
which is much closer to 1/2.

Note that when we say the probability of a head is 1/2, we are not
claiming that any sequence of coin tosses will consist of exactly 50%
heads. If we toss a fair coin ten times, it would not be surprising to
observe 6 heads and 4 tails, or even 3 heads and 7 tails. But as we
continue to toss the coin over and over again, we expect the long-run
frequency of heads to get ever closer to 50%. In general, it is impor-
tant in statistics to understand the distinction between theoretical and
empirical quantities. Here, the true (theoretical) probability of a head
was 1/2, but any realized (empirical) sequence of coin tosses may
have more or less than exactly 50% heads. (See Figures 1 – 3.)

Now suppose instead that we were to toss an unusual coin with
heads on both of its faces. Then every time we flip this coin we will
observe a head — we say that the probability of a head is 1. The
probability of a tail, on the other hand, is 0. Note that there is no way
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we can further modify the coin to make flipping a head even more
likely. Thus, a probability is always a number between 0 and 1 inclusive.

First Concepts

Terminology

When we later discuss examples that are more complicated than flip-
ping a coin, it will be useful to have an established vocabulary for
working with probabilities. A probabilistic experiment (such as toss-
ing a coin or rolling a die) has several components. The sample space
is the set of all possible outcomes in the experiment. We usually de-
note the sample space by Ω, the Greek capital letter “Omega.” So in
a coin toss experiment, the sample space is

Ω = {H, T},

since there are only two possible outcomes: heads (H) or tails (T).
Different experiments have different sample spaces. So if we instead
consider an experiment in which we roll a standard six-sided die, the
sample space is

Ω = {1, 2, 3, 4, 5, 6}.

Collections of outcomes in the sample space Ω are called events,
and we often use capital Roman letters to denote these collections.
We might be interested in the event that we roll an even number, for
example. If we call this event E, then

E = {2, 4, 6}.

Any subset of Ω is a valid event. In particular, one-element subsets
are allowed, so we can speak of the event F of rolling a 4, F = {4}.

Assigning probabilities to dice rolls and coin flips

In a random experiment, every event gets assigned a probability. No-
tationally, if A is some event of interest, then P(A) is the probability
that A occurs. The probabilities in an experiment are not arbitrary;
they must satisfy a set of rules or axioms. We first require that all
probabilities be nonnegative. In other words, in an experiment with
sample space Ω, it must be the case that

P(A) ≥ 0 (1)

for any event A ⊆ Ω. This should make sense given that we’ve
already said that a probability of 0 is assigned to an impossible event,
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and there is no way for something to be less likely than something
that is impossible!

The next axiom is that the sum of the probabilities of all the outcomes
in Ω must be 1. We can restate this requirement by the equation

∑
ω∈Ω

P(ω) = 1. (2)

This rule can sometimes be used to deduce the probability of an
outcome in certain experiments. Consider an experiment in which we
roll a fair die, for example. Then each outcome (i.e. each face of the
die) is equally likely. That is,

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = a,

for some number a. Equation (2) now allows us to conclude

1 =
6

∑
k=1

P(k) =
6

∑
k=1

a = 6a,

so a = 1/6. In this example, we were able to use the symmetry of the
experiment along with one of the probability axioms to determine the
probability of rolling any number.

Once we know the probabilties of the outcomes in an experiment,
we can compute the probability of any event. This is because the
probability of an event is the sum of the probabilities of the outcomes it
comprises. In other words, for an event A ⊆ Ω, the probability of A is

P(A) = ∑
ω∈A

P(ω). (3)

To illustrate this equation, let us find the probability of rolling an
even number, an event which we will denote by E. Since E = {2, 4, 6},
we simply add the probabilities of these three outcomes to obtain

P(E) = ∑
ω∈E

P(ω)

= P(2) + P(4) + P(6)

=
1
6
+

1
6
+

1
6

=
1
2

.

What is the probability that we get at least one H?

Solution. One way to solve this problem is to add up the probabilities
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of all outcomes that have at least one H. We would get

P(flip at least one H) = P(HH) + P(HT) + P(TH)

= p2 + p · (1− p) + (1− p) · p
= p2 + 2 · (p− p2)

= 2p− p2

= p · (2− p).

Another way to do this is to find the probability that we don’t flip at
least one H, and subtract that probability from 1. This would give us
the probability that we do flip at least one H.

The only outcome in which we don’t flip at least one H is if we flip
T both times. We would then compute

P(don’t flip at least one H) = P(TT) = (1− p)2

Then to get the complement of this event, i.e. the event where we
do flip at least one H, we subtract the above probability from 1. This
gives us

P(flip at least one H) = 1− P(don’t flip at least one H)

= 1− (1− p)2

= 1− (1− 2p + p2)

= 2p− p2

= p · (2− p).

Wowee! Both methods for solving this problem gave the same an-
swer. Notice that in the second calculation, we had to sum up fewer
probabilities to get the answer. It can often be the case that comput-
ing the probability of the complement of an event and subtracting
that from 1 to find the probability of the original event requires less
work.

Independence

If two events A and B don’t influence or give any information about
the other, we say A and B are independent. Remember that this is
not the same as saying A and B are disjoint. If A and B were dis-
joint, then given information that A happened, we would know with
certainty that B did not happen. Hence if A and B are disjoint they
could never be independent. The mathematical statement of indepen-
dent events is given below.

Definition 0.0.1. Let A and B both be subsets of our sample space Ω. Then
we say A and B are independent if

P(A ∩ B) = P(A)P(B)
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In other words, if the probability of the intersection factors into the product
of the probabilities of the individual events, they are independent.

We haven’t defined set intersection in this section, but it is defined
in the set theory chapter. The ∩ symbol represents A and B happen-
ing, i.e. the intersection of the events.

Example 0.0.1. Returning to our double coin flip example, our sample
space was

Ω = {HH, HT, TH, TT}

Define the events

A .
= {first flip heads} = {HH, HT}

B .
= {second flip heads} = {HT, TT}

Notation: We write the sign .
= to represent that we are defining something.

In the above expression, we are defining the arbitrary symbols A and B to
represent events.

Intuitively, we suspect that A and B are independent events, since the
first flip has no effect on the outcome of the second flip. This intuition aligns
with the definition given above, as

P(A ∩ B) = P({HT}) = 1
4

and

P(A) = P(B) =
1
4
+

1
4
=

1
2

.

We can verify that

P(A ∩ B) =
1
4
=

1
2
· 1

2
= P(A)P(B)

Hence A and B are independent. This may have seemed like a silly exercise,
but in later chapters, we will encounter pairs of sets where it is not intu-
itively clear whether or not they are independent. In these cases, we can
simply verify this mathematical definition to conclude independence.
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Expectation

Consider the outcome of a single die roll, and call it X. A reasonable
question one might ask is “What is the average value of X?". We
define this notion of “average” as a weighted sum of outcomes.

Since X can take on 6 values, each with probability 1
6 , the weighted

average of these outcomes should be

Weighted Average =
1
6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6

=
1
6
· (1 + 2 + 3 + 4 + 5 + 6)

=
21
6

= 3.5

This may seem dubious to some. How can the average roll be a non-
integer value? The confusion lies in the interpretation of the phrase
average roll. A more correct interpretation would be the long term
average of the die rolls. Suppose we rolled the die many times, and
recorded each roll. Then we took the average of all those rolls. This
average would be the fraction of 1’s, times 1, plus the fraction of 2’s,
times 2, plus the fraction of 3’s, times 3, and so on. But this is exactly
the computation we have done above! In the long run, the fraction of
each of these outcomes is nothing but their probability, in this case, 1

6
for each of the 6 outcomes.

From this very specific die rolling example, we can abstract the no-
tion of the average value of a random quantity. The concept of average
value is an important one in statistics, so much so that it even gets a
special bold faced name. Below is the mathematical definition for the
expectation, or average value, of a random quantity X.

Definition 0.0.2. The expected value, or expectation of X, denoted by
E(X), is defined to be

E(X) = ∑
x∈X(Ω)

xP(X = x)

This expression may look intimidating, but it is actually convey-
ing a very simple set of instructions, the same ones we followed to
compute the average value of X.

The ∑ sign means to sum over, and the indices of the items we are
summing are denoted below the ∑ sign. The ∈ symbol is shorthand
for “contained in”, so the expression below the ∑ is telling us to
sum over all items contained in our sample space Ω. We can think of
the expression to the right of the ∑ sign as the actual items we are
summing, in this case, the weighted contribution of each item in our
sample space.
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The notation X(Ω) is used to deal with the fact that Ω may not be
a set of numbers, so a weighted sum of elements in Ω isn’t even well
defined. For instance, in the case of a coin flip, how can we compute
H · 1

2 + T · 1
2 ? We would first need to assign numerical values to H and T

in order to compute a meaningful expected value. For a coin flip we
typically make the following assignments,

T 7→ 0

H 7→ 1

So when computing an expectation, the indices that we would sum
over are contained in the set

X(Ω) = {0, 1}

Let’s use this set of instructions to compute the expected value for a
coin flip.

Expectation of a Coin Flip

Now let X denote the value of a coin flip with bias p. That is, with
probability p we flip H, and in this case we say X = 1. Similarly,
with probability 1− p we flip T, and in this case we say X = 0. The
expected value of the random quantity X is then

E(X) = ∑
x∈X(Ω)

xP(X = x)

= ∑
x∈{0,1}

xP(X = x)

= 0 · P(X = 0) + 1 · P(X = 1)

= 0 · P(T) + 1 · P(H)
= 0 · (1− p) + 1 · p
= p

So the expected value of this experiment is p. If we were flipping a
fair coin, then p = 1

2 , so the average value of X would be 1
2 .

Again, we can never get an outcome that would yield X = 1
2 , but

this is not the interpretation of the expectation of X. Remember, the
correct interpretation is to consider what would happen if we flipped
the coin many times, obtained a sequence of 0’s and 1’s, and took the
average of those values. We would expect around half of the flips to
give 0 and the other half to give 1, giving an average value of 1

2 .

Exercise 0.0.1. Show the following properties of expectation.

(a) If X and Y are two random variables, then

E(X + Y) = E(X) + E(Y)
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(b) If X is a random variable and c is a constant, then

E(cX) = cE(X)

(c) If X and Y are independent random variables, then

E[XY] = E[X]E[Y]

Proof. For now, we will take (a) and (c) as a fact, since we don’t know
enough to prove them yet (and we haven’t even defined indepen-
dence of random variables!). (b) follows directly from the definition
of expectation given above.

Variance

The variance of a random variable X is a nonnegative number that
summarizes on average how much X differs from its mean, or expec-
tation. The first expression that comes to mind is

X− E(X)

i.e. the difference between X and its mean. This itself is a random
variable, since even though EX is just a number, X is still random.
Hence we would need to take an expectation to turn this expression
into the average amount by which X differs from its expected value.
This leads us to

E(X− EX)

This is almost the definition for variance. We require that the vari-
ance always be nonnegative, so the expression inside the expectation
should always be ≥ 0. Instead of taking the expectation of the differ-
ence, we take the expectation of the squared difference.

Definition 0.0.3. The variance of X, denoted by Var(X) is defined

Var(X) = E[(X− EX)2]

Below we give and prove some useful properties of the variance.

Proposition 0.0.1. If X is a random variable with mean EX and c ∈ is a
real number,

(a) Var(X) ≥ 0.

(b) Var(cX) = c2Var(X).

(c) Var(X) = E(X2)− E(X).
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(d) If X and Y are independent random variables, then

Var(X + Y) = Var(X) + Var(Y)

Proof.

(a) Since (X − EX)2 ≥ 0, its average is also ≥ 0. Hence E[(X −
EX)2] ≥ 0.

(b) Going by the definition, we have

Var(cX) = E[(cX− E[cX])2]

= E[(cX− cEX)2]

= E[c2(X− EX)2]

= c2E[(X− EX)2]

= c2Var(X)

(c) Expanding out the square in the definition of variance gives

Var(X) = E[(X− EX)2]

= E[X2 − 2XEX + (EX)2]

= E[X2]− E(2XEX) + E((EX)2)

= E[X2]− 2EXEX + (EX)2

= E[X2]− (EX)2

where the third equality comes from linearity of E (Exercise 2.3
(a)) and the fourth equality comes from Exercise 2.3 (b) and the
fact that since EX and (EX)2 are constants, their expectations are
just EX and (EX)2 respectively.

(d) By the definition of variance,

Var(X + Y) = E[(X + Y)2]− (E[X + Y])2

= E[X2 + 2XY + Y2]−
(
(E[X])2 + 2E[X]E[Y] + (E[Y])2

)
= E[X2]− (E[X])2 + E[Y2]− (E[Y]2) + 2E[XY]− 2E[X]E[Y]

= E[X2]− (E[X])2 + E[Y2]− (E[Y]2)

= Var(X) + Var(Y)

where the fourth equality comes from the fact that if X and Y are
independent, then E[XY] = E[X]E[Y]. Independence of random
variables will be discussed in the “Random Variables” section, so
don’t worry if this proof doesn’t make any sense to you yet.
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Exercise 0.0.2. Compute the variance of a die roll, i.e. a uniform random
variable over the sample space Ω = {1, 2, 3, 4, 5, 6}.

Solution. Let X denote the outcome of the die roll. By definition, the
variance is

Var(X) = E[(X− EX)]2

= E(X2)− (EX)2 (Proposition 2.11 (c))

=
( 6

∑
k=1

k2 · 1
6

)
− (3.5)2 (Definition of Expectation)

=
1
6
· (1 + 4 + 9 + 16 + 25 + 36)− 3.52

=
1
6
· 91− 3.52

≈ 2.92

Remark 0.0.1. The square root of the variance is called the standard
deviation.

Markov’s Inequality

Here we introduce an inequality that will be useful to us in the next
section. Feel free to skip this section and return to it when you read
“Chebyschev’s inequality" and don’t know what’s going on.

Markov’s inequality is a bound on the probability that a nonnega-
tive random variable X exceeds some number a.

Theorem 0.0.1 (Markov’s inequality). Suppose X is a nonnegative
random variable and a ∈ is a positive constant. Then

P(X ≥ a) ≤ EX
a

Proof. By definition of expectation, we have

EX = ∑
k∈X(Ω)

kP(X = k)

= ∑
k∈X(Ω) s.t. k≥a

kP(X = k) + ∑
k∈X(Ω) s.t. k<a

kP(X = k)

≥ ∑
k∈X(Ω) s.t. k≥a

kP(X = k)

≥ ∑
k∈X(Ω) s.t. k≥a

aP(X = k)

= a ∑
k∈X(Ω) s.t. k≥a

P(X = k)

= aP(X ≥ a)
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where the first inequality follows from the fact that X is nonnegative
and probabilities are nonnegative, and the second inequality follows
from the fact that k ≥ a over the set {k ∈ X(Ω) s.t. k ≥ a}.

Notation: “s.t.” stands for “such that”.
Dividing both sides by a, we recover

P(X ≥ a) ≤ EX
a

Corollary 0.0.1 (Chebyschev’s inequality). Let X be a random variable.
Then

P(|X− EX| > ε) ≤ Var(X)

ε2

Proof. This is marked as a corollary because we simply apply Markov’s
inequality to the nonnegative random variable (X − EX)2. We then
have

P(|X− EX| > ε) = P((X− EX)2 > ε2) (statements are equivalent)

≤ E[(X− EX)2]

ε2 (Markov’s inequality)

=
Var(X)

ε2 (definition of variance)
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Estimation

One of the main reasons we do statistics is to make inferences about
a population given data from a subset of that population. For exam-
ple, suppose there are two candidates running for office. We could
be interested in finding out the true proportion of the population
that supports a particular political candidate. Instead of asking every
single person in the country their preferred candidate, we could ran-
domly select a couple thousand people from across the country and
record their preference. We could then estimate the true proportion
of the population that supports the candidate using this sample pro-
portion. Since each person can only prefer one of two candidates, we
can model this person’s preference as a coin flip with bias p = the
true proportion that favors candidate 1.

Estimating the Bias of a Coin

Suppose now that we are again flipping a coin, this time with bias p.
In other words, our coin can be thought of as a random quantity X
defined

X =

1 with probability p

0 with probability 1− p

where 1 represents H and 0 represents T. If we were just handed this
coin, and told that it has some bias 0 ≤ p ≤ 1, how would we
estimate p? One way would be to flip the coin n times, count the
number of heads we flipped, and divide that number by n. Letting Xi

be the outcome of the ith flip, our estimate, denoted p̂, would be

p̂ =
1
n

n

∑
i=1

Xi

As the number of samples n gets bigger, we would expect p̂ to get
closer and closer to the true value of p.

Estimating π

In the website’s visualization, we are throwing darts uniformly at
a square, and inside that square is a circle. If the side length of the
square that inscribes the circle is L, then the radius of the circle is
R = L

2 , and its area is A = π( L
2 )

2. At the ith dart throw, we can define

Xi =

1 if the dart lands in the circle

0 otherwise
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The event “dart lands in the circle" has probability

p =
Area of Circle
Area of Square

=
π
(

L
2

)2

L2 =
π

4

So with probability p = π
4 , a dart lands in the circle, and with proba-

bility 1− π
4 , it doesn’t.

By the previous section, we can estimate p using p̂ = 1
n ∑n

i=1 Xi so
that for large enough n, we have

p̂ ≈ p =
π

4

so that rearranging for π yields

π ≈ 4p̂

Hence our approximation gets closer and closer to π as the number
of sample n→ ∞ causing p̂→ p.

Consistency of Estimators

What exactly do we mean by “closer and closer"? In this section, we
describe the concept of consistency in order to make precise this
notion of convergence. Our estimator in the last section, 4p̂ is itself
random, since it depends on the n sample points we used to compute
it. If we were to take a different set of n sample points, we would
likely get a different estimate. Despite this randomness, intuitively
we believe that as the number of samples n tends to infinity, the
estimator 4p̂ will converge in some probabilistic sense, to π.

Another way to formulate this is to say, no matter how small a
number we pick, say 0.001, we should always be able to conclude that
the probability that our estimate differs from π by more than 0.001,
goes to 0 as the number of samples goes to infinity. We chose 0.001 in
this example, but this notion of probabilistic convergence should hold
for any positive number, no matter how small. This leads us to the
following definition.

Definition 0.0.4. We say an estimator p̂ is a consistent estimator of p if
for any ε > 0,

lim
n→∞

P(| p̂− p| > ε) = 0.

Let’s show that 4p̂ is a consistent estimator of π.
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Proof. Choose any ε > 0. By Chebyshev’s inequality (Corollary 2.13),

P(|4p̂− π| > ε) ≤ Var(4p̂)
ε2

=
Var
(

4 · 1
n ∑n

i=1 Xi

)
ε2 (Definition of p̂)

=

16
n2 Var

(
∑n

i=1 Xi

)
ε2 (Var(cY) = c2Var(Y))

=
16
n2 ∑n

i=1 Var(Xi)

ε2 (Xi’s are independent)

=
16
n2 · n ·Var(X1)

ε2 (Xi’s are identically distributed)

=
16
n · p(1− p)

ε2 (Var(Xi) = p(1− p))

=
16 · π

4

(
1− π

4

)
nε2 (p =

π

4
)

→ 0

as n → ∞. Hence we have shown that 4p̂ is a consistent estimator of
π.
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Set Theory

A probability measure P is a function that maps subsets of the state
space Ω to numbers in the interval [0, 1]. In order to study these
functions, we need to know some basic set theory.

Basic Definitions

Definition 0.0.5. A set is a collection of items, or elements, with no re-
peats. Usually we write a set A using curly brackets and commas to distin-
guish elements, shown below

A = {a0, a1, a2}

In this case, A is a set with three distinct elements: a0, a1, and a2. The size
of the set A is denoted |A| and is called the cardinality of A. In this case,
|A| = 3. The empty set is denoted ∅ and means

∅ = { }

Some essential set operations in probability are the intersection,
union, and complement operators, denoted ∩,∪, and c. They are
defined below

Definition 0.0.6. Intersection and Union each take two sets in as input,
and output a single set. Complementation takes a single set in as input
and outputs a single set. If A and B are subsets of our sample space Ω, then
we write

(a) A ∩ B = {x ∈ Ω : x ∈ A and x ∈ B}.

(b) A ∪ B = {x ∈ Ω : x ∈ A or x ∈ B}.

(c) Ac = {x ∈ Ω : x /∈ A}.

Another concept that we need to be familiar with is that of dis-
jointness. For two sets to be disjoint, they must share no common
elements, i.e. their intersection is empty.
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Definition 0.0.7. We say two sets A and B are disjoint if

A ∩ B = ∅

It turns out that if two sets A and B are disjoint, then we can write
the probability of their union as

P(A ∪ B) = P(A) + P(B)

Set Algebra

There is a neat analogy between set algebra and regular algebra.
Roughly speaking, when manipulating expressions of sets and set
operations, we can see that “ ∪ ” acts like “ + ” and “ ∩ ” acts like “×
”. Taking the complement of a set corresponds to taking the negative
of a number. This analogy isn’t perfect, however. If we considered the
union of a set A and its complement Ac, the analogy would imply
that A ∪ Ac = ∅, since a number plus its negative is 0. However, it is
easily verified that A ∪ Ac = Ω (Every element of the sample space is
either in A or not in A.)

Although the analogy isn’t perfect, it can still be used as a rule of
thumb for manipulating expressions like A ∩ (B ∪ C). The number
expression analogy to this set expression is a × (b + c). Hence we
could write it

a× (b + c) = a× b + a× c

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

The second set equality is true. Remember that what we just did was
not a proof, but rather a non-rigorous rule of thumb to keep in mind.
We still need to actually prove this expression.

Exercise 0.0.3. Show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof. To show set equality, we can show that the sets are contained
in each other. This is usually done in two steps.

Step 1: “⊂”. First we will show that A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩
C).

Select an arbitrary element in A ∩ (B ∪ C), denoted ω. Then by
definition of intersection, ω ∈ A and ω ∈ (B ∪ C). By definition of
union, ω ∈ (B ∪ C) means that ω ∈ B or ω ∈ C. If ω ∈ B, then since
ω is also in A, we must have ω ∈ A ∩ B. If ω ∈ C, then since ω is also
in A, we must have ω ∈ A ∩ C. Thus we must have either

ω ∈ A ∩ B or ω ∈ A ∩ C

Hence, ω ∈ (A ∩ B) ∪ (A ∩ C). Since ω was arbitrary, this shows that
any element of A ∩ (B ∪ C) is also an element of (A ∩ B) ∪ (A ∩ C).
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Thus we have shown

A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C)

Step 2: “ ⊃ ”. Next we will show that (A ∩ B) ∪ (A ∩ C) ⊂
A ∩ (B ∪ C).

Select an arbitrary element in (A ∩ B) ∪ (A ∩ C), denoted ω. Then
ω ∈ (A ∩ B) or ω ∈ (A ∩ C). If ω ∈ A ∩ B, then ω ∈ B. If ω ∈ A ∩ C,
then ω ∈ C. Thus ω is in either B or C, so ω ∈ B ∪ C. In either case,
ω is also in A. Hence ω ∈ A ∩ (B ∪ C). Thus we have shown

(A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C)

Since we have shown that these sets are included in each other, they
must be equal. This completes the proof.

On the website, plug in each of the sets (A ∩ B) ∪ (A ∩ C) and
A ∩ (B ∪ C). Observe that the highlighted region doesn’t change,
since the sets are the same!

DeMorgan’s Laws

In this section, we will show two important set identities useful for
manipulating expressions of sets. These rules known as DeMorgan’s
Laws.

Theorem 0.0.2 (DeMorgan’s Laws). Let A and B be subsets of our sam-
ple space Ω. Then

(a) (A ∪ B)c = Ac ∩ Bc

(b) (A ∩ B)c = Ac ∪ Bc.

Proof.

(a) We will show that (A ∪ B)c and Ac ∩ Bc are contained within
each other.

Step 1: “⊂". Suppose ω ∈ (A ∪ B)c. Then ω is not in the set
A ∪ B, i.e. in neither A nor B. Then ω ∈ Ac and ω ∈ Bc, so
ω ∈ Ac ∩ Bc. Hence (A ∪ B)c ⊂ Ac ∩ Bc.

Step 2: “⊃". Suppose ω ∈ Ac ∩ Bc. Then ω is not in A and ω is
not in B. So ω is in neither A nor B. This means ω is not in the
set (A ∪ B), so ω ∈ (A ∪ B)c. Hence Ac ∩ Bc ⊂ (A ∪ B)c.

Since Ac ∩ Bc and (A ∪ B)c are subsets of each other, they must
be equal.

(b) Left as an exercise.
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If you’re looking for more exercises, there is a link on the Set The-
ory page on the website that links to a page with many set identities.
Try to prove some of these by showing that the sets are subsets of
each other, or just plug them into the website to visualize them and
see that their highlighted regions are the same.

Combinatorics

In many problems, to find the probability of an event, we will have
to count the number of outcomes in Ω which satisfy the event, and
divide by |Ω|, i.e. the total number of outcomes in Ω. For example,
to find the probability that a single die roll is even, we count the total
number of even rolls, which is 3, and divide by the total number of
rolls, 6. This gives a probability of 1

2 . But what if the event isn’t as
simple as “roll an even number”? For example if we flipped 10 coins,
our event could be “flipped 3 heads total”. How could we count the
number of outcomes that have 3 heads in them without listing them
all out? In this section, we will discover how to count the outcomes
of such an event, and generalize the solution to be able to conquer
even more complex problems.

Permutations

Suppose there are 3 students waiting in line to buy a spicy chicken
sandwich. A question we could ask is, “How many ways can we
order the students in this line?" Since there are so few students, let’s
just list out all possible orderings. We could have any of

6 of these



(1, 2, 3)

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

(3, 1, 2)

(3, 2, 1)

So there are 6 total possible orderings. If you look closely at the list
above, you can see that there was a systematic way of listing them.
We first wrote out all orderings starting with 1. Then came the order-
ings starting with 2, and then the ones that started with 3. In each of
these groups of orderings starting with some particular student, there
were two orderings. This is because once we fixed the first person
in line, there were two ways to order the remaining two students.
Denote Ni to be the number of ways to order i students. Now we
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observe that the number of orderings can be written

N3 = 3 · N2

since there are 3 ways to pick the first student, and N2 ways to order
the remaining two students. By similar reasoning,

N2 = 2 · N1

Since the number of ways to order 1 person is just 1, we have N1 = 1.
Hence,

N3 = 3 · N2 = 3 · (2 · N1) = 3 · 2 · 1 = 6

which is the same as what we got when we just listed out all the
orderings and counted them.

Now suppose we want to count the number of orderings for 10

students. 10 is big enough that we can no longer just list out all pos-
sible orderings and count them. Instead, we will make use of our
method above. The number of ways to order 10 students is

N10 = 10 · N9 = 10 · (9 · N8) = · · · = 10 · 9 · 8 · 7 · ... · 2 · 1 = 3, 628, 800

It would have nearly impossible for us to list out over 3 million or-
derings of 10 students, but we were still able to count these orderings
using our neat trick. We have a special name for this operation.

Definition 0.0.8. The number of permutations, or orderings, of n distinct
objects is given by the factorial expression,

n! = n · (n− 1) · ... · 2 · 1

The factorial symbol is an exclamation point, which is used to
indicate the excitement of counting.

Combinations

Now that we’ve established a quick method of counting the number
of ways to order n distinct objects, let’s figure out how to do our
original problem. At the start of this section we asked how to count
the number of ways we could flip 10 coins and have 3 of them be
heads. The valid outcomes include

(H, H, H, T, T, T, T, T, T, T)

(H, H, T, H, T, T, T, T, T, T)

(H, H, T, T, H, T, T, T, T, T)

...
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But its not immediately clear how to count all of these, and it defi-
nitely isn’t worth listing them all out. Instead let’s apply the permu-
tations trick we learned in Section 3.2.2.

Suppose we have 10 coins, 3 of which are heads up, the remaining
7 of which are tails up. Label the 3 heads as coins 1, 2, and 3. Label
the 7 tails as coins 4,5,6,7,8,9, and 10. There are 10! ways to order,
or permute, these 10 (now distinct) coins. However, many of these
permutations correspond to the same string of H’s and T’s. For ex-
ample, coins 7 and 8 are both tails, so we would be counting the two
permutations

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(1, 2, 3, 4, 5, 6, 8, 7, 9, 10)

as different, when they both correspond to the outcome

(H, H, H, T, T, T, T, T, T, T)

hence we are over counting by just taking the factorial of 10. In fact,
for the string above, we could permute the last 7 coins in the string
(all tails) in 7! ways, and we would still get the same string, since
they are all tails. To any particular permutation of these last 7 coins,
we could permute the first 3 coins in the string (all heads) in 3! ways
and still end up with the string

(H, H, H, T, T, T, T, T, T, T)

This means that to each string of H’s and T’s, we can rearrange the
coins in 3! · 7! ways without changing the actual grouping of H’s and
T’s in the string. So if there are 10! total ways of ordering the labeled
coins, we are counting each unique grouping of heads and tails 3! ·
7! times, when we should only be counting it once. Dividing the
total number of permutations by the factor by which we over count
each unique grouping of heads and tails, we find that the number of
unique groupings of H’s and T’s is

# of outcomes with 3 heads and 7 tails =
10!
3!7!

This leads us to the definition of the binomial coefficient.

Definition 0.0.9. The binomial coefficient is defined(
n
k

)
.
=

n!
k!(n− k)!

The binomial coefficient, denoted (n
k), represents the number of

ways to pick k objects from n objects where the ordering within the
chosen k objects doesn’t matter. In the previous example, n = 10 and
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k = 3. We could rephrase the question as, “How many ways can we
pick 3 of our 10 coins to be heads?" The answer is then(

n
k

)
=

(
10
3

)
=

10!
3!(10− 3)!

=
10!
3!7!

= 120

We read the expression (n
k) as “n choose k". Let’s now apply this

counting trick to make some money.

Poker

One application of counting includes computing probabilities of
poker hands. A poker hand consists of 5 cards drawn from the deck.
The order in which we receive these 5 cards is irrelevant. The number
of possible hands is thus(

52
5

)
=

52!
5!(52− 5)!

= 2, 598, 960

since there are 52 cards to choose 5 cards from.
In poker, there are types of hands that are regarded as valuable in

the following order form most to least valuable.

1. Royal Flush: A, K, Q, J, 10 all in the same suit.

2. Straight Flush: Five cards in a sequence, all in the same suit.

3. Four of a Kind: Exactly what it sounds like.

4. Full House: 3 of a kind with a pair.

5. Flush: Any 5 cards of the same suit, but not in sequence.

6. Straight: Any 5 cards in sequence, but not all in the same suit.

7. Three of a Kind: Exactly what it sounds like.

8. Two Pair: Two pairs of cards.

9. One Pair: One pair of cards.

10. High Card: Anything else.

Let’s compute the probability of drawing some of these hands.

Exercise 0.0.4. Compute the probabilities of the above hands.

Solution.

1. There are only 4 ways to get this hand. Either we get the royal
cards in diamonds, clubs, hearts, or spades. We can think of this
has choosing 1 suit from 4 possible suits. Hence the probability of
this hand is

P(Royal Flush) =
(4

1)

(52
5 )
≈ 1.5 · 10−6
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2. Assuming hands like K, A, 2, 3, 4 don’t count as consecutive, there
are in total 10 valid consecutive sequences of 5 cards (each starts
with any of A,2,. . . ,10). We need to pick 1 of 10 starting values,
and for each choice of a starting value, we can pick 1 of 4 suits to
have them all in. This gives a total of (10

1 ) · (
4
1) = 40 straight flushes.

However, we need to subtract out the probability of a royal flush,
since one of the ten starting values we counted was 10 (10, J, Q, K,
A is a royal flush). Hence the probability of this hand is

P(Straight Flush) =
(10

1 )(
4
1)− (4

1)

(52
5 )

≈ 1.5 · 10−5

3. There are 13 values and only one way to get 4 of a kind for any
particular value. However, for each of these ways to get 4 of a
kind, the fifth card in the hand can be any of the remaining 48

cards. Formulating this in terms of our choose function, there are
(13

1 ) ways to choose the value, (12
1 ) ways to choose the fifth card’s

value, and (4
1) ways to choose the suit of the fifth card. Hence the

probability of such a hand is

P(Four of a Kind) =
(13

1 )(
12
1 )(

4
1)

(52
5 )

≈ 0.00024

4. For the full house, there are (13
1 ) ways to pick the value of the

triple, (4
3) ways to choose which 3 of the 4 suits to include in the

triple, (12
1 ) ways to pick the value of the double, and (4

2) ways to
choose which 2 of the 4 suits to include in the double. Hence the
probability of this hand is

P(Full House) =
(13

1 )(
4
3)(

12
1 )(

4
2)

(52
5 )

≈ 0.0014

5. through 10. are left as exercises. The answers can be checked on
the Wikipedia page titled “Poker probability”.
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Conditional Probability

Suppose we had a bag that contained two coins. One coin is a fair
coin, and the other has a bias of 0.95, that is, if you flip this biased
coin, it will come up heads with probability 0.95 and tails with prob-
ability 0.05. Holding the bag in one hand, you blindly reach in with
your other, and pick out a coin. You flip this coin 3 times and see that
all three times, the coin came up heads. You suspect that this coin is
“likely” the biased coin, but how “likely” is it?

This problem highlights a typical situation in which new infor-
mation changes the likelihood of an event. The original event was
“we pick the biased coin”. Before reaching in to grab a coin and then
flipping it, we would reason that the probability of this event occur-
ring (picking the biased coin) is 1

2 . After flipping the coin a couple
of times and seeing that it landed heads all three times, we gain new
information, and our probability should no longer be 1

2 . In fact, it
should be much higher. In this case, we “condition” on the event of
flipping 3 heads out of 3 total flips. We would write this new proba-
bility as

P(picking the biased coin | flipping 3 heads out of 3 total flips)

The “bar” between the two events in the probability expression above
represents “conditioned on”, and is defined below.

Definition 0.0.10. The probability of an event A conditioned on an event B
is denoted and defined

P(A | B) =
P(A ∩ B)

P(B)

The intuition of this definition can be gained by playing with the
visualization on the website. Suppose we drop a ball uniformly at
random in the visualization. If we ask “What is the probability that
a ball hits the orange shelf?", we can compute this probability by
simply dividing the length of the orange shelf by the length of the
entire space. Now suppose we are given the information that our
ball landed on the green shelf. What is the probability of landing on
the orange shelf now? Our green shelf has become our “new” sam-
ple space, and the proportion of the green shelf that overlaps with
the orange shelf is now the only region in which we could have pos-
sibly landed on the orange shelf. To compute this new conditional
probability, we would divide the length of the overlapping, or “inter-
secting”, regions of the orange and green shelves by the total length
of the green shelf.
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Bayes Rule

Now that we’ve understood where the definition of conditional prob-
ability comes from, we can use it to prove a useful identity.

Theorem 0.0.3 (Bayes Rule). Let A and B be two subsets of our sample
space Ω. Then

P(A | B) =
P(B | A)P(A)

P(B)

Proof. By the definition of conditional probability,

P(A | B) =
P(A ∩ B)

P(B)

Similarly,

P(B | A) =
P(A ∩ B)

P(A)

Multiplying both sides by P(A) gives

P(B | A)P(A) = P(A ∩ B)

Plugging this into our first equation, we conclude

P(A | B) =
P(B | A)P(A)

P(B)

Coins in a Bag

Let’s return to our first example in this section and try to use our
new theorem to find a solution. Define the events

A .
= {Picking the biased coin}

B .
= {Flipping 3 heads out of 3 total flips}

We were interested in computing the probability P(A | B). By Bayes
Rule,

P(A | B) =
P(B | A)P(A)

P(B)

P(B | A), i.e. the probability of flipping 3 heads out of 3 total flips
given that we picked the biased coin, is simply (0.95)3 ≈ 0.857. The
probability P(A), i.e. the probability that we picked the biased coin
is 1

2 since we blindly picked a coin from the bag. Now all we need to
do is compute P(B), the overall probability of flipping 3 heads in this
experiment. Remember from the set theory section, we can write

B = B ∩Ω = B ∩ (A ∪ Ac) = (B ∩ A) ∪ (B ∩ Ac)
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So

P(B) = P((B ∩ A) ∪ (B ∩ Ac)) = P(B ∩ A) + P(B ∩ Ac)

since the two sets B ∩ A and B ∩ Ac are disjoint. By the definition of
conditional probability, we can write the above expression as

= P(B | A)P(A) + P(B | Ac)P(Ac)

We just computed P(B | A) and P(A). Similarly, the probability that
we flip 3 heads given that we didn’t pick the biased coin, denoted
P(B | Ac), is the probability that we flip 3 heads given we picked the
fair coin, which is simply ( 1

2 )
3 = 0.125. The event Ac represents the

event in which A does not happen, i.e. the event that we pick the fair
coin. We have P(Ac) = 1− P(A) = 1− 1

2 = 1
2 . Hence

P(B) = P(B | A)P(A) + P(B | Ac)P(Ac)

= 0.857 · 0.5 + 0.125 · 0.5

= 0.491

Plugging this back into the formula given by Bayes Rule,

P(A | B) =
0.857 · 0.5

0.491
= 0.873

Thus, given that we flipped 3 heads out of a total 3 flips, the proba-
bility that we picked the biased coin is roughly 87.3%.

Conditional Poker Probabilities

Within a game of poker, there are many opportunities to flex our
knowledge of conditional probability. For instance, the probability
of drawing a full house is 0.0014, which is less than 2%. But suppose
we draw three cards and find that we have already achieved a pair.
Now the probability of drawing a full house is higher than 0.0014.
How much higher you ask? With our new knowledge of conditional
probability, this question is easy to answer. We define the events

A .
= {Drawing a Full House}

B .
= {Drawing a Pair within the first three cards}

By Bayes Rule,

P(A | B) =
P(B | A)P(A)

P(B)

P(B | A), i.e. the probability that we draw a pair within the first three
cards given that we drew a full house eventually, is 1. This is because
every grouping of three cards within a full house must contain a
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pair. From Section 3.2.3, the probability of drawing a full house is
P(A) = 0.0014.

It remains to compute P(B), the probability that we draw a pair
within the first three cards. The total number of ways to choose 3

cards from 52 is (52
3 ). The number of ways to choose 3 cards con-

taining a pair is (13
1 )(

4
2)(

50
1 ). There are (13

1 ) to choose the value of the
pair, (4

2) ways to pick which two suits of the chosen value make the
pair, and (50

1 ) ways to pick the last card from the remaining 50 cards.
Hence the probability of the event B is

P(B) =
(13

1 )(
4
2)(

50
1 )

(52
3 )

≈ 0.176

Plugging this into our formula from Bayes Rule,

P(A | B) =
1 · 0.0014

0.176
≈ 0.00795

It follows that our chance of drawing a full house has more than
quadrupled, increasing from less than 2% to almost 8%.



Probability Distributions

Throughout the past chapters, we’ve actually already encountered
many of the topics in this section. In order to define things like ex-
pectation and variance, we introduced random variables denoted X
or Y as mappings from the sample space to the real numbers. All of
the distributions we’ve so far looked at have been what are called
discrete distributions. We will soon look at the distinction between
discrete and continuous distributions. Additionally we will introduce
perhaps the most influential theorem in statistics, the Central Limit
Theorem, and give some applications.

Random Variables

In Section 2.2 (Expectation), we wanted to find the expectation of
a coin flip. Since the expectation is defined as a weighted sum of
outcomes, we needed to turn the outcomes into numbers before
taking the weighted average. We provided the mapping

T 7→ 0

H 7→ 1

Here was our first encounter of a random variable.

Definition 0.0.11. A function X that maps outcomes in our sample space
to real numbers, written X : Ω→, is called a random variable.

In the above example, our sample space was

Ω = {H, T}

and our random variable X : Ω →, i.e. our function from the sample
space Ω to the real numbers , was defined by

X(T) = 0

X(H) = 1

Now would be a great time to go onto the website and play with the
“Random Variable” visualization. The sample space is represented



32 seeing theory

by a hexagonal grid. Highlight some hexagons and specify the value
your random variable X assigns to those hexagons. Start sampling on
the grid to see the empirical frequencies on the left.

Independence of Random Variables

In previous sections we’ve mentioned independence of random vari-
ables, but we’ve always swept it under the rug during proofs since
we hadn’t yet formally defined the concept of a random variable.
Now that we’ve done so, we can finally define a second form of inde-
pendence (different from independence of events).

Definition 0.0.12. Suppose X and Y are two random variables defined on
some sample space Ω. We say X and Y are independent random vari-
ables if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for any two subsets A and B of .

Let’s go back and prove Exercise 2.9 (c), i.e. that if X and Y are
independent random variables, then

E[XY] = E[X]E[Y]

Proof. Define the random variable Z(ω) = X(ω)Y(ω). By the defini-
tion of expectation, the left hand side can be written

E[XY] = ∑
z∈Z(Ω)

z · P(Z = z)

= ∑
x∈X(Ω),y∈Y(Ω)

xyP(X = x, Y = y)

= ∑
x∈X(Ω)

∑
y∈Y(Ω)

xyP(X ∈ {x}, Y ∈ {y})

= ∑
x∈X(Ω)

∑
y∈Y(Ω)

xyP(X ∈ {x})P(Y ∈ {y})

= ∑
x∈X(Ω)

xP(X ∈ {x}) ∑
y∈Y(Ω)

yP(Y ∈ {y})

= E[X]E[Y]

This completes the proof.
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Discrete vs. Continuous

Thus far we have only studied discrete random variables, i.e. random
variables that take on only up to countably many values. The word
“countably” refers to a property of a set. We say a set is countable if
we can describe a method to list out all the elements in the set such
that for any particular element in the set, if we wait long enough in
our listing process, we will eventually get to that element. In contrast,
a set is called uncountable if we cannot provide such a method.

Countable vs. Uncountable

Let’s first look at some examples.

Example 0.0.2. The set of all natural numbers

N
.
= {1, 2, 3, . . . }

is countable. Our method of enumeration could simply be to start at 1 and
add 1 every iteration. Then for any fixed element n ∈ N, this process would
eventually reach and list out n.

Example 0.0.3. The integers,

Z
.
= {0, 1,−1, 2,−2, 3,−3, . . . }

is countable. Our method of enumeration as displayed above is to start with
0 for the first element, add 1 to get the next element, multiply by -1 to get
the third element, and so on. Any integer k ∈ Z, if we continue this process
long enough, will be reached.

Example 0.0.4. The set of real numbers in the interval [0, 1] is uncountable.
To see this, suppose for the sake of contradiction that this set were countable.
Then there would exist some enumeration of the numbers in decimal form. It
might look like

0 . 1 3 5 4 2 9 5 . . .

0 . 4 2 9 4 7 2 6 . . .

0 . 3 9 1 6 8 3 1 . . .

0 . 9 8 7 3 4 3 5 . . .

0 . 2 9 1 8 1 3 6 . . .

0 . 3 7 1 6 1 8 2 . . .

...

Consider the element along the diagonal of such an enumeration. In this case
the number is

a .
= 0.121318 . . .
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Now consider the number obtained by adding 1 to each of the decimal places,
i.e.

a′ .
= 0.232429 . . .

This number is still contained in the interval [0, 1], but does not show up in
the enumeration. To see this, observe that a′ is not equal to the first element,
since it differs in the first decimal place by 1. Similarly, it is not equal to the
second element, as a′ differs from this number by 1 in the second decimal
place. Continuing this reasoning, we conclude that a′ differs from the nth

element in this enumeration in the nth decimal place by 1. It follows that if
we continue listing out numbers this way, we will never reach the number
a′. This is a contradiction since we initially assumed that our enumeration
would eventually get to every number in [0, 1]. Hence the set of numbers in
[0, 1] is uncountable.

If you’re left feeling confused after these examples, the important
take away is that an uncountable set is much bigger than a countable
set. Although both are infinite sets of elements, uncountable infinity
refers to a “bigger” notion of infinity, one which has no gaps and can
be visualized as a continuum.

Discrete Distributions

Definition 0.0.13. A random variable X is called discrete if X can only
take on finitely many or countably many values.

For example, our coin flip example yielded a random variable
X which could only take values in the set {0, 1}. Hence, X was a
discrete random variable. However, discrete random variables can
still take on infinitely many values, as we see below.

Example 0.0.5 (Poisson Distribution). A useful distribution for modeling
many real world problems is the Poisson Distribution. Suppose λ > 0 is a
positive real number. Let X be distributed according to a Poisson distribu-
tion with parameter λ, i.e.

P(X = k) =
e−λλk

k!

where k ∈ N. The shorthand for stating such a distribution is X ∼ Poi(λ).
Since k can be any number in N, our random variable X has a positive
probability on infinitely many numbers. However, since N is countable, X is
still considered a discrete random variable.

On the website there is an option to select the “Poisson” distribution in
order to visualize its probability mass function. Changing the value of λ

changes the probability mass function, since λ shows up in the probability
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expression above. Drag the value of λ from 0.01 up to 10 to see how varying
λ changes the probabilities.

Example 0.0.6 (Binomial Distribution). Another useful distribution
is called the Binomial Distribution. Consider n coin flips, i.e. n random
variables X1, . . . , Xn each of the form

Xi =

1 with probability p

0 with probability 1− p

Now consider the random variable defined by summing all of these coin flips,
i.e.

S .
=

n

∑
i=1

Xi

We might then ask, “What is the probability distribution of S?” Based on
the definition of S, it can take on values from 0 to n, however it can only
take on the value 0 if all the coins end up tails. Similarly, it can only take on
the value n if all the coins end up heads. But to take on the value 1, we only
need one of the coins to end up heads and the rest to end up tails. This can
be achieved in many ways. In fact, there are (n

1) ways to pick which coin gets
to be heads up. Similarly, for S = 2, there are (n

2) ways to pick which two
coins get to be heads up. It follows that for S = k, there are (n

k) ways to pick
which k coins get to be heads up. This leads to the following form,

P(S = k) =
(

n
k

)
pk(1− p)n−k

The pk comes from the k coins having to end up heads, and the (1− p)n−k

comes from the remaining n− k coins having to end up tails. Here it is clear
that k ranges from 0 to n, since the smallest value is achieved when no coins
land heads up, and the largest number is achieved when all coins land heads
up. Any value between 0 and n can be achieved by picking a subset of the n
coins to be heads up.

Selecting the “Binomial” distribution on the website will allow you to
visualize the probability mass function of S. Play around with n and p to see
how this affects the probability distribution.

Continuous Distributions

Definition 0.0.14. We say that X is a continuous random variable if X
can take on uncountably many values.

If X is a continuous random variable, then the probability that X
takes on any particular value is 0.
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Example 0.0.7. An example of a continuous random variable is a Uni-
form[0,1] random variable. If X ∼ Uniform[0,1], then X can take on any
value in the interval [0,1], where each value is equally likely. The probabil-
ity that X takes on any particular value in [0, 1], say 1

2 for example, is 0.
However, we can still take probabilities of subsets in a way that is intuitive.
The probability that x falls in some interval (a, b) where 0 ≤ a < b ≤ 1 is
written

P(X ∈ (a, b)) = b− a

The probability of this event is simply the length of the interval (a, b).

A continuous random variable is distributed according to a proba-
bility density function, usually denoted f , defined on the domain of X.
The probability that X lies in some set A is defined as

P(X ∈ A) =
∫

A
f

This is informal notation but the right hand side of the above just
means to integrate the density function f over the region A.

Definition 0.0.15. A probability density function f (abbreviated pdf) is
valid if it satisfies the following two properties.

1. f (x) ≥ 0 for all x ∈

2.
∫ ∞
−∞ f (x)dx = 1

Example 0.0.8 (Exponential Distribution). Let λ > 0 be a positive real
number. Suppose X is a continuous random variable distributed according
to the density

f (x) =

λe−λx x > 0

0 x ≤ 0

Let’s check that f defines a valid probability density function. Since λ > 0
and ey is positive for any y ∈, we have f (x) ≥ 0 for all x ∈. Additionally,
we have ∫ ∞

0
f (x)dx =

∫ ∞

0
λe−λx

=
[
λ
−1
λ

e−λx
]∞

0

= 0− (−1)

= 1

Since f is nonnegative and integrates to 1, it is a valid pdf.
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Example 0.0.9 (Normal Distribution). We arrive at perhaps the most
known and used continuous distributions in all of statistics. The Normal
distribution is specified by two parameters, the mean µ and variance σ2.
To say X is a random variable distributed according to a Normal distribu-
tion with mean µ and variance σ2, we would write X ∼ N(µ, σ2). The
corresponding pdf is

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Some useful properties of normally distributed random variables are given
below.

Proposition 0.0.2. If X ∼ N(µx, σ2
x) and Y ∼ N(µy, σ2

y ) are independent
random variables, then

(a) The sum is normally distributed, i.e.

X + Y ∼ N(µx + µy, σ2
x + σ2

y )

(b) Scaling by a factor a ∈ results in another normal distribution, i.e. we
have

aX ∼ N(aµx, a2σ2
x)

(c) Adding a constant a ∈ results in another normal distribution, i.e.

X + a ∼ N(µx + a, σ2
x)

Heuristic. In order to rigorously prove this proposition, we need
to use moment generating functions, which aren’t covered in these
notes.

However, if we believe that X + Y, aX, and X + a are all still nor-
mally distributed, it follows that the specifying parameters (µ and σ2)
for the random variables in (a), (b), and (c) respectively are

E(X + Y) = EX + EY = µx + µy

Var(X + Y) = Var(X) + Var(Y) = σ2
x + σ2

y

and

E(aX) = aEX = aµx

Var(aX) = a2Var(X) = a2σ2
x

and

E(X + a) = EX + a = µx + a

Var(X + a) = Var(X) + Var(a) = Var(X) = σ2
x
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The Central Limit Theorem

We return to dice rolling for the moment to motivate the next result.
Suppose you rolled a die 50 times and recorded the average roll as
X̄1 = 1

50 ∑50
k=1 Xk. Now you repeat this experiment and record the

average roll as X̄2. You continue doing this and obtain a sequence of
sample means {X̄1, X̄2, X̄3, . . . }. If you plotted a histogram of the re-
sults, you would begin to notice that the X̄i’s begin to look normally
distributed. What are the mean and variance of this approximate
normal distribution? They should agree with the mean and variance
of X̄i, which we compute below. Note that these calculations don’t
depend on the index i, since each X̄i is a sample mean computed
from 50 independent fair die rolls. Hence we omit the index i and
just denote the sample mean as X̄ = 1

50 ∑50
k=1 Xk.

E(X̄) = E
( 1

50

50

∑
k=1

Xk

)
=

1
50

50

∑
k=1

E(Xk)

=
1
50

50

∑
k=1

3.5

=
1
50
· 50 · 3.5

= 3.5

where the second equality follows from linearity of expectations, and
the third equality follows from the fact that the expected value of a
die roll is 3.5 (See Section 2.2). The variance of X̄i is

Var(X̄) = Var
( 1

50

50

∑
k=1

Xk

)
(Definition of X̄i)

=
1

502 Var
( 50

∑
k=1

Xk

)
(Var(cY) = c2Var(Y))

=
1

502

50

∑
k=1

Var(Xk) (Xk’s are independent.)

=
1

502 · 50 ·Var(Xk) (Xk’s are identically distributed.)

≈ 1
50
· 2.92

≈ 0.0583

where we computed Var(Xk) ≈ 2.92 in Exercise 2.12. So we would
begin to observe that the sequence of sample means begins to re-
semble a normal distribution with mean µ = 3.5 and variance
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σ2 = 0.0582. This amazing result follows from the Central Limit
Theorem, which is stated below.

Theorem 0.0.4 (Central Limit Theorem). Let X1, X2, X3, . . . be iid
(independent and identically distributed) with mean µ and variance σ2.
Then

X̄ → N
(

µ,
σ2

n

)
in distribution as n→ ∞.

All this theorem is saying is that as the number of samples n
grows large, independent observations of the sample mean X̄ look
as though they were drawn from a normal distribution with mean µ

and variance σ2

n . The beauty of this result is that this type of conver-
gence to the normal distribution holds for any underlying distribu-
tion of the Xi’s. In the previous discussion, we assumed that each Xi

was a die roll, so that the underlying distribution was discrete uni-
form over the set Ω = {1, 2, 3, 4, 5, 6}. However, this result is true for
any underlying distribution of the Xi’s.

A continuous distribution we have not yet discussed is the Beta
distribution. It is characterized by two parameters α and β (much like
the normal distribution is characterized by the parameters µ and σ2.)
On the Central Limit Theorem page of the website, choose values for
α and β and observe that the sample means look as though they are
normally distributed. This may take a while but continue pressing
the “Submit” button until the histogram begins to fit the normal
curve (click the check box next to “Theoretical” to show the plot of
the normal curve).

Corollary 0.0.2. Another way to write the convergence result of the Central
Limit Theorem is

X̄− µ

σ/
√

n
→ N(0, 1)

Proof. By the CLT, X̄ becomes distributed N(µ, σ2

n ). By Proposition
4.14 (c), X̄− µ is then distributed

X̄− µ ∼ N
(

µ− µ,
σ2

n

)
= N

(
0,

σ2

n

)
Combining the above with Proposition 4.14 (a), we have that X̄−µ

σ/
√

n is
distributed

X̄− µ

σ/
√

n
∼ N

(
0,

σ2

n
·
( 1

σ/
√

n

)2)
= N(0, 1)





Frequentist Inference

The topics of the next three sections are useful applications of the
Central Limit Theorem. Without knowing anything about the under-
lying distribution of a sequence of random variables {Xi}, for large
sample sizes, the CLT gives a statement about the sample means. For
example, if Y is a N(0, 1) random variable, and {Xi} are distributed
iid with mean µ and variance σ2, then

P
( X̄− µ

σ/
√

n
∈ A

)
≈ P(Y ∈ A)

In particular, if we want an interval in which Y lands with probability
0.95, we look online or in a book for a z table, which will tell us that
for a N(0, 1) random variable Y,

P(Y ∈ (−1.96, 1.96)) = P(−1.96 ≤ Y ≤ 1.96) = 0.95

Since X̄−µ

σ/
√

n is nearly N(0, 1) distributed, this means

P
(
− 1.96 ≤ X̄− µ

σ/
√

n
≤ 1.96

)
= 0.95

From the above statement we can make statements about experi-
ments in order to quantify confidence and accept or reject hypothe-
ses.

Confidence Intervals

Suppose that during the presidential election, we were interested in
the proportion p of the population that preferred Hillary Clinton to
Donald Trump. It wouldn’t be feasible to call every single person in
the country and write down who they prefer. Instead, we can take a
bunch of samples, X1, . . . , Xn where

Xi =

1 if person i prefers Hillary

0 otherwise
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Then the sample mean X̄ = 1
n ∑n

i=1 Xi is the proportion of our sample
that prefers Hillary. Let p be the true proportion that prefer Hillary
(p is not known). Note that EX̄ = p, since each Xi is 1 with probabil-
ity p and 0 with probability 1− p. Then by the CLT,

X̄− p
σ/
√

n
∼ N(0, 1)

Since we don’t know the true value of σ, we estimate it using the
sample variance, defined

S2 .
=

1
n− 1

n

∑
i=1

(Xi − X̄)2

This is a consistent estimator for σ2, so for large n, the probability
that it differs greatly from the true variance σ2 is small. Hence we

can replace σ in our expression with S =
√

1
n−1 ∑n

i=1(Xi − X̄)2. Since
X̄−p

S/
√

n is approximately N(0, 1) distributed, we have

P
(
− 1.96 ≤ X̄− p

S/
√

n
≤ 1.96

)
= 0.95

Rearranging the expression for p, we have

P
(
− 1.96 · S√

n
≤ X̄− p ≤ 1.96 · S√

n

)
= 0.95

⇒ P
(
− 1.96 · S√

n
− X̄ ≤ −p ≤ 1.96 · S√

n
− X̄

)
= 0.95

⇒ P
(

1.96 · S√
n
+ X̄ ≥ p ≥ X̄− 1.96 · S√

n

)
= 0.95

Even though we do not know the true value for p, we can conclude
from the above expression that with probability 0.95, p is contained
in the interval (

X̄− 1.96 · S√
n

, X̄ + 1.96 · S√
n

)
This is called a 95% confidence interval for the parameter p. This
approximation works well for large values of n, but a rule of thumb
is to make sure n > 30 before using the approximation.

On the website, there is a confidence interval visualization. Try se-
lecting the Uniform distribution to sample from. Choosing a sample
size of n = 30 will cause batches of 30 samples to be picked, their
sample means computed, and their resulting confidence intervals
displayed on the right. Depending on the confidence level picked
(the above example uses α = 0.05, so 1− α = 0.95), the generated
confidence intervals will contain the true mean µ with probability
1− α.
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Hypothesis Testing

Let’s return to the example of determining voter preference in the
2016 presidential election. Suppose we suspect that the proportion of
voters who prefer Hillary Clinton is greater than 1

2 , and that we take
n samples, denoted {Xi}n

i=1 from the U.S. population. Based on these
samples, can we support or reject our hypothesis that Hillary Clin-
ton is more popular? And how confident are we in our conclusion?
Hypothesis testing is the perfect tool to help answer these questions.

Constructing a Test

A hypothesis in this context is a statement about a parameter of in-
terest. In the presidential election example, the parameter of interest
was p, the proportion of the population who supported Hillary Clin-
ton. A hypothesis could then be that p > 0.5, i.e. that more than half
of the population supports Hillary.

There are four major components to a hypothesis test.

1. The alternative hypothesis, denoted Ha, is a claim we would like to
support. In our previous example, the alternative hypothesis was
p > 0.5.

2. The null hypothesis, denoted H0 is the opposite of the alternative
hypothesis. In this case, the null hypothesis is p ≤ 0.5, i.e. that less
than half of the population supports Hillary.

3. The test statistic is a function of the sample observations. Based on
the test statistic, we will either accept or reject the null hypothesis.
In the previous example, the test statistic was the sample mean
X̄. The sample mean is often the test statistic for many hypothesis
tests.

4. The rejection region is a subset of our sample space Ω that de-
termines whether or not to reject the null hypothesis. If the test
statistic falls in the rejection region, then we reject the null hypoth-
esis. Otherwise, we accept it. In the presidential election example,
the rejection region would be

RR: {(x1, . . . , xn) : X̄ > k}

This notation means we reject if X̄ falls in the interval (k, ∞),
where k is some number which we must determine. k is deter-
mined by the Type I error, which is defined in the next section.
Once k is computed, we reject or accept the null hypothesis de-
pending on the value of our test statistic, and our test is complete.
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Types of Error

There are two fundamental types of errors in hypothesis testing.
They are denoted Type I and II error.

Definition 0.0.16. A Type I error is made when we reject H0 when it is in
fact true. The probability of Type I error is typically denoted as α.

In other words, α is the probability of a false positive.

Definition 0.0.17. A Type II error is made when we accept H0 when it is
in fact false. The probability of Type II error is typically denoted as β.

In other words, β is the probability of a false negative.
In the context of hypothesis testing, α will determine the rejection

region. If we restrict the probability of a false positive to be less than
0.05, then we have

P(X̄ ∈ RR | H0) ≤ 0.05

i.e. our test statistic falls in the rejection region (meaning we reject
H0), given that H0 is true, with probability 0.05. Continuing along
our example of the presidential election, the rejection region was of
the form X̄ > k, and the null hypothesis was that p ≤ 0.5. Our above
expression then becomes

P(X̄ > k | p ≤ 0.5) ≤ 0.05

If n > 30, we can apply the CLT to say,

P(
X̄− p
S/
√

n
>

k− p
S/
√

n
| p ≤ 0.5) = P(Y >

k− p
S/
√

n
| p ≤ 0.5)

where Y is a N(0, 1) random variable. Since p ≤ 0.5 implies k−p
S/
√

n ≥
k−0.5
S/
√

n , we must also have

Y >
k− p
S/
√

n
⇒ Y >

k− 0.5
S/
√

n

Hence,

P(Y >
k− p
S/
√

n
| p ≤ 0.5) ≤ P(Y >

k− 0.5
S/
√

n
)

So if we bound the probability on the right side of the inequality by
0.05, then we also bound the probability on the left (the Type I error,
α) by 0.05. Since Y is distributed N(0, 1), we can look up a z table to
find that z0.05 = −1.64, so

P(Y > 1.64) = P(Y < −1.64) = 0.05
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Letting k−0.5
S/
√

n = 1.64, we can solve for k to determine our rejection
region.

k = 0.5 + 1.64 · S√
n

Since our rejection region was of the form X̄ > k, we simply check
whether X̄ > 0.5 + 1.64 · S√

n . If this is true, then we reject the null,
and conclude that more than half the population favors Hillary Clin-
ton. Since we set α = 0.05, we are 1− α = 0.95 confident that our
conclusion was correct.

In the above example, we determined the rejection region by plug-
ging in 0.5 for p, even though the null hypothesis was p ≤ 0.5. It is
almost as though our null hypothesis was H0 : p = 0.5 instead of
H0 : p ≤ 0.5. In general, we can simplify H0 and assume the border
case (p = 0.5 in this case) when we are determining the rejection
region.
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p-Values

As we saw in the previous section, a selected α determined the re-
jection region so that the probability of a false positive was less than
α. Now suppose we observe some test statistic, say, the sample pro-
portion of voters X̄ who prefer Hillary Clinton. We then ask the
following question. Given X̄, what is the smallest value of α such
that we still reject the null hypothesis? This leads us to the following
definition.

Definition 0.0.18. The p-value, denoted p, is defined

p = min{α ∈ (0, 1) : Reject H0 using an α level test}

i.e. the smallest value of α for which we still reject the null hypothesis.

This definition isn’t that useful for computing p-values. In fact,
there is a more intuitive way of thinking about them. Suppose we
observe some sample mean X̄1. Now suppose we draw a new sample
mean, X̄2. The p-value is just the probability that our new sample
mean is more extreme than the one we first observed, assuming the
null hypothesis is true. By “extreme” we mean, more different from
our null hypothesis.

Below we go through an example which verifies that the intuitive
definition given above agrees with Definition 5.3.

Example 0.0.10. Suppose that we sampled n people and asked which can-
didate they preferred. As we did before, we can represent each person as an
indicator function,

Xi =

1 if person i prefers Hillary

0 otherwise

Then X̄ is the proportion of the sample that prefers Hillary. After taking
the n samples, suppose we observe that X̄ = 0.7. If we were to set up a
hypothesis test, our hypotheses, test statistic, and rejection region would be

H0 : q ≤ 0.5

Ha : q > 0.5

Test statistic: X̄

RR: {(x1, . . . , xn) : X̄ > k}

where q is the true proportion of the entire U.S. population that favors
Hillary. Using the intuitive definition, the p value is the probability that
we observe something more extreme than 0.7. Since the null hypothesis is
that q ≤ 0.5, “more extreme” in this case means, “bigger than 0.7”. So the
p-value is the probability that, given a new sample, we observe the new X̄ is
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greater than 0.7, assuming the null, i.e. that q ≤ 0.5. Normalizing X̄, we
have

P(X̄ > 0.7 | H0) = P
( X̄− 0.5

S/
√

n
>

0.7− 0.5
S/
√

n

)
≈ P

(
Y >

0.7− 0.5
S/
√

n

) .
= p

(4)

where Y ∼ N(0, 1). We would then compute the value zp
.
= 0.7−0.5

S/
√

n by
plugging in the sample standard deviation, S, and the number of samples we
took, n. We would then look up a z table and find the probability correspond-
ing to zp, denoted p (this is our p value).

We now claim that this p is equal to the smallest α for which we reject
the null hypothesis, i.e. that our intuitive definition of a p-value agrees with
Definition 5.3. To show that

p = min{α ∈ (0, 1) : Reject H0 using an α level test},

we need to show that for any α < p, we accept the null hypothesis. We also
need to show that for any α ≥ p, we reject the null hypothesis.

Case 1: Suppose α < p. We need to show that the test statistic X̄ = 0.7
falls in the acceptance region determined by α. Using a z table, we could
find zα such that

α = P(Y > zα) ≈ P(
X̄− 0.5
S/
√

n
> zα | H0) = P(X̄ > zα ·

S√
n
+ 0.5 | H0)

Since the RHS of the above expression is the probability of Type I error, the
rejection region is determined by

X̄ > kα
.
= zα ·

S√
n
+ 0.5

Since α < p, the corresponding zp such that p = P(Y > zp) satisfies
zp < zα. By the RHS of expression (1),

p = P
(

Y >
0.7− 0.5

S/
√

n

)
which implies zp = 0.7−0.5

S/
√

n ⇒ zp · S√
n + 0.5 = 0.7. This implies that

0.7 = zp ·
S√
n
+ 0.5 < zα ·

S√
n
+ 0.5 = kα

Therefore X̄ = 0.7 < kα implies X̄ = 0.7 is in the acceptance region
determined by α. Hence, we accept the null hypothesis for any α < p.

Case 2: Suppose α ≥ p. We need to show that the test statistic X̄ = 0.7
falls in the rejection region determined by α. By reasoning similar to the
kind in Case 1, we would have zα ≤ zp. This implies

kα
.
= zα ·

S√
n
+ 0.5 ≤ zp ·

S√
n
+ 0.5 = 0.7

Hence X̄ = 0.7 ≥ kα implies that X̄ = 0.7 is in the rejection region
determined by α. Hence, we reject the null hypothesis for any α ≥ p.
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Example 5.4 (above) justifies the definition of p-values which gives
an easy way to compute them. Given some observation of our test
statistic X̄, we compute the p-value by calculating the probability of
seeing something more different or “extreme" than our observed X̄,
assuming H0 is true. By the argument in Example 5.4, this value is
the same as the smallest α level for which we reject H0.



Bayesian Inference

Introduction

The frequentist approach to inference holds that probabilities
are intrinsicially tied (unsurprisingly) to frequencies. This interpreta-
tion is actually quite natural. What, according to a frequentist, does
it mean to say that the probability a fair coin will come up heads
is 1/2? Well, simply that in an infinite sequence of independent
tosses of the same coin, half will come up heads (loosely speaking).
Many random experiments are in fact repeatable, and the frequentist
paradigm readily applies in such situations.

It is often desirable, however, to assign probabilities to events
that are not repeatable. When the weather forecast tells you that
there is a 90% chance of rain tomorrow, for example, it is assigning
a probability to a one-off event, since tomorrow only happens once!
What’s more, there are many scenarios in which we would like to
assign probabilities to non-random events that nevertheless involve
uncertainty. A bank might be interested in designing an automated
system that computes the probability that a signature on a check
is genuine. Even though there is an underlying ground truth (the
signature is either genuine or not), there is uncertainty from the
bank’s point of view, so the use of probability is justified. The pure
frequentist interpretation of probabilities cannot be squared up with
either of these use cases.

Bayesian inference takes a subjective approach and views prob-
abilities as representing degrees of belief. It is thus perfectly valid
to assign probabilities to non-repeating and non-random events, so
long as there is uncertainty that we wish to quantify. The fact that
Bayesian probabilities are subjective does not mean they are arbitrary.
The rules for working with Bayesian probabilities are identical to
those for working with the frequentist variety. Bayesians are simply
happy to assign probabilities to a larger class of events than frequen-
tists are.

The essential spirit of Bayesian inference is encapsulated by Bayes’
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theorem.

Bayes’ theorem

Suppose that during a routine medical examination, your doctor in-
forms you that you have tested positive for a rare disease. You are
initially distressed, but as a good statistician, you are also aware that
these tests can be finicky and there is some uncertainty in their re-
sults. Unfortunately for you, this test is quite accurate — it reports
a positive result for 95% of the patients with the disease, and a neg-
ative result for 95% of the healthy patients. The outlook does not
appear to be good.

As a good Bayesian statistician, however, you realize that these
test accuracies are not quite the bottom line, as far as your health
is concerned. If we let “+” and “−” denote a positive and negative
test result, respectively, then the test accuracies are the conditional
probabilities

P(+ | disease) = 0.95,

P(− | healthy) = 0.95.

But what you are really interested in is

P(disease | +).

In order to compute this last quantity, we need to “turn around”
the conditional probabilities encoded in the test accuracies. This is
achieved by Bayes’ theorem.

Theorem 0.0.5 (Bayes’ Theorem). Let Y1, . . . , Yk be a partition of the
sample space Ω and let X be any event. Then

P(Yj|X) =
P(X|Yj)P(Yj)

∑k
i=1 P(X|Yi)P(Yi)

.

Since “disease” and “healthy” partition the sample space of out-
comes, we have

P(disease|+) =
P(+|disease)P(disease)

P(+|disease)P(disease) + P(+|healthy)P(healthy)
.

Importantly, Bayes’ theorem reveals that in order to compute the
conditional probability that you have the disease given the test was
positive, you need to know the “prior” probability you have the
disease P(disease), given no information at all. That is, you need to
know the overall incidence of the disease in the population to which
you belong. We mentioned earlier that this is a rare disease. In fact,
only 1 in 1,000 people are affected, so P(disease) = 0.001, which
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in turn implies P(healthy) = 0.999. Plugging these values into the
equation above gives

P(disease | +) ≈ 0.019.

In other words, despite the apparent reliability of the test, the prob-
ability that you actually have the disease is still less than 2%. The
fact that the disease is so rare means that most of the people who test
positive will be healthy, simply because most people are healthy in
general. Note that the test is certainly not useless; getting a positive
result increases the probability you have the disease by about 20-fold.
But it is incorrect to interpret the 95% test accuracy as the probability
you have the disease.

The Bayesian procedure

The above example is illustrative of the general procedure for doing
Bayesian inference. Suppose you are interested in some parameter θ.

1. Encode your initial beliefs about θ in the form of a prior distribu-
tion P(θ).

2. Collect data X via experimentation, observation, querying, etc.

3. Update your beliefs using Bayes’ theorem to the posterior distribu-
tion

P(θ|X) =
P(X|θ)P(θ)

P(X)
.

4. Repeat the entire process as more data become available.

Prior, likelihood, posterior

As it turns out, Bayes’ theorem is so fundamental to Bayesian infer-
ence that special names are given to the terms in the equation.

Prior

The prior distribution is the unconditional distribution P(θ). The
goal of the prior is to capture our pre-existing knowledge about θ,
before we see any data. In the medical testing example, we used the
incidence of the disease in the population as the prior probability that
any particular individual has the disease.
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Likelihood

In Bayesian and frequentist statistics alike, the likelihood of a param-
eter θ given data X is P(X|θ). The likelihood function plays such an
important role in classical statistics that it gets its own letter:

L(θ|X) = P(X|θ).

This notation emphasizes the fact that we view the likelihood as a
function of θ for some fixed data X.

Figure 4 shows a random sample x of 8 points drawn from a stan-
dard normal distribution, along with the corresponding likelihood
function of the mean parameter.

Figure 4: The orange curve shows
the likelihood function for the mean
parameter of a normal distribution
with variance 1, given a sample of 8

points (middle) from a standard normal
density (top).

In general, given a sample of n independent and identically dis-
tributed random variables X1, . . . , Xn from some distribution P(X|θ),
the likelihood is

L(θ|X1, . . . , Xn) = P(X1, . . . , Xn|θ)

=
n

∏
i=1

P(Xi|θ).

In the case of the normal distribution with variance 1 and unknown
mean θ, this equation suggests a way to visualize how the likelihood
function is generated. Imagine sliding the probability density func-
tion of a Normal(θ, 1) distribution from left to right by gradually
increasing θ. As we encounter each sample Xi, the density “lifts”
the point off the x-axis. The dotted lines in the middle panel of Fig-
ure 5 represent the quantities P(Xi|θ). Their product is precisely the
likelihood, which is plotted in orange at the bottom of Figure 5.

3slide.png

Figure 5: Each orange dotted line in the
middle panel represents the quantity
P(xi |θ). The product of the lengths of
these dotted lines is the likelihoood for
the value of θ that produced the density
in blue.

We can see that the likelihood is maximized by the value of θ

for which the density of a Normal(θ, 1) distribution is able to lift
the most points the furthest off the x-axis. It can be shown that this
maximizing value is given by the sample mean

X̄ =
1
n

n

∑
i=1

Xi.

In this case we say that the sample mean is the maximum likelihood
estimator of the parameter θ.

In Bayesian inference, the likelihood is used to measure quantify
the degree to which a set of data X supports a particular parameter
value θ. The essential idea is that if the data could be generated by a
given parameter value θ with high probability, then such a value of θ

is favorable in the eyes of the data.

Posterior

The goal of Bayesian inference is to update our prior beliefs P(θ)
by taking into account data X that we observe. The end result of
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this inference procedure is the posterior distribution P(θ|X). Bayes’
theorem specifies the way in which the posterior is computed,

P(θ|X) =
P(X|θ)P(θ)

P(X)
.

Since in any particular inference problem, the data is fixed, we are
often interested in only the terms which are functions of θ. Thus, the
essence of Bayes’ theorem is

P(θ|X) ∝ P(X|θ)P(θ),

or in words,

Posterior ∝ Likelihood× Prior,

where all the terms above are viewed as functions of θ. Our final
beliefs about θ combine both the relevant information we had a priori
and the knowledge we gained a posteriori by observing data.

Coin Tosses

To get an understanding of what the Bayesian machinery looks like
in action, let us return to our coin toss example. Suppose you just
found a quarter lying on the sidewalk. You are interested in deter-
mining the extent to which this quarter is biased. More precisely, you
wish to determine the probability p that the coin will come up heads.
The most natural way to determine the value of p is to start flipping
the coin and see what happens. So you flip the coin once and observe
that the coin comes up heads. What should you conclude?

It is tempting to say that we cannot conclude anything from a sin-
gle coin toss. But this is not quite true. The result of this toss tells us
at the very least that p 6= 0, whereas before the toss it was certainly
possible that p = 0 (perhaps both sides were tails). Furthermore, we
should now be slightly more inclined to believe that p takes on larger
values than we were before the toss. Which values we believe are
reasonable depends on what our prior beliefs were. Most of the coins
I have encountered in my life have been fair, or at least very close to
fair. So my prior distribution on the value of p for any particular coin
might look something like this.





Regression Analysis

Linear regression is one of the most widely used tools in statistics.
Suppose we were jobless college students interested in finding out
how big (or small) our salaries would be 20 years from now. There’s
no way to pin down this number for sure, but we know that there are
many factors that contribute to how much money a college graduate
will make. For example, a naive observation (but a good starting
point) is that students with higher GPAs earn more money 20 years
from now. In this case, we assume that there is some true distribution
that governs the behavior of the random variables

X .
= GPA

Y .
= Salary 20 years from now

where X and Y are not independent. In this case, we call X a predictor
of Y. Another way that people refer to X and Y are as independent
and dependent variables (nothing to do with probabilistic indepen-
dence), since Y depends on X. In the following sections, we set up a
linear model to describe the relationship between Y and X, which we
can then use to predict our own future salary, based on some sample
data.

Ordinary Least Squares

The Linear Model

Since X and Y seem to have some relationship, it would be reason-
able to assume that given some value of X, we have a better idea
about what Y is. Intuitively, we would expect students with higher
GPAs to have a larger future salary, so we could model the relation-
ship between X and Y using a line. That is, for some real numbers w0

and w1,

Y = w0 + w1X

This is our familiar y = mx + b relationship from high school algebra,
but with different names for m and b.
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Note that this is an extremely simple model that is likely to miss
most of the nuances in predicting someone’s salary 20 years from
now. There are in fact many more predictors than someone’s GPA
that affect their future salary. Also notice that we can express the
above relationship using the following vector form.

Y = X · w .
= (1, X) · (w0, w1)

where “·” represents the dot product. This form is why the method is
called linear regression.

Exercise 0.0.5. Verify the function f :2→ defined by

f (w) = X · w

is linear in w.

Solution. Remember that the term linear was used to describe the
“Expectation” operator. The two conditions we need to check are

(a) For any vectors w, v ∈2, we have

f (u + v) = f (w) + f (v)

(b) For any vector w ∈2 and constant c ∈,

f (cw) = c f (w)

To show (a), we know that w and v are vectors of the form

w .
= (w0, w1)

v .
= (v0, v1)

so that

f (w + v) = f ((w0, w1) + (v0, v1))

= f ((w0 + v0, w1 + v1))

= X · (w0 + v0, w1 + v1)

= (1, X) · (w0 + v0, w1 + v1) (Definition of X)

= (w0 + v0) + X(w1 + v1) (Definition of dot product)

= (w0 + Xw1) + (v0 + Xv1) (Rearranging)

= X · w + X · v

= f (w) + f (v)
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For (b), observe that if w ∈2 and c ∈,

f (cw) = X · (cw0, cw1)

= (1, X) · (cw0, cw1)

= cw0 + cw1X

= c(w0 + w1X)

= cX · w

= c f (w)

This completes the proof.

The observation that f is linear in w as opposed to linear in X is
an extremely important distinction. Take a moment and let it sink in.
This means that we can transform X in crazy nonlinear ways while
maintaining the linearity of this problem. For example, the proof
above implies that we could replace X with log(X) or sin(X) and we
still have a linear relationship between Y and w.

The above example not realistic in the sense that its extremely un-
likely that if we sampled n college graduates and their actual salaries
20 years after college, all their GPAs fall on a perfect line when plot-
ted against their salaries. That is, if we took n sample points, written

Sample = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}

and plotted these points in the plane with “GPA” on the x-axis and
“Salary” on the y-axis, the points would almost surely not fall on a
perfect line. As a result, we introduce an error term ε, so that

Y = X · w + ε (5)

All of this hasn’t yet told us how to predict our salaries 20 years
from now using only our GPA. The subject of the following section
gives a method for determining the best choice for w0 and w1 given
some sample data. Using these values, we could plug in the vector
(1, our GPA) for X in equation (2) and find a corresponding predicted
salary Y (within some error ε).

Method of Least Squares

Our current model for X and Y is the relationship

Y = X · w + ε

where ε is some error term. Suppose we go out and ask a bunch of
50 year olds for their college GPAs and their salaries 20 years out of
college. We can pair these quantities and record this sample data as

Data = {(x1, y1), (x2, y2), . . . , (xn, yn)}
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Remember that we assume these samples come from the relationship

yi = (1, xi) · (w0, w1) + εi

and we are trying to find w0 and w1 to best fit the data. What do
we mean by “best fit”? The notion we use is to find w0 and w1 that
minimize the sum of squared errors ∑n

i=1 ε2
i . Rearranging the above

equation for εi, we can rewrite this sum of squared errors as

E(w)
.
=

n

∑
i=1

ε2
i =

n

∑
i=1

(yi − xi · w)2

where the vector xi is shorthand for (1, xi). As we can see above, the
error E is a function of w. In order to minimize the squared error,
we minimize the function E with respect to w. E is a function of
both w0 and w1. In order to minimize E with respect to these values,
we need to take partial derivatives with respect to w0 and w1. This
derivation can be tricky in keeping track of all the indices so the
details are omitted. If we differentiate E with respect to w0 and w1,
we eventually find that minimizing w can be expressed in matrix
form as

[
w0

w1

]
=


[

1 1 . . . 1
x1 x2 . . . xn

] 
1 x1

1 x2
...

...
1 xn



−1 [

1 1 . . . 1
x1 x2 . . . xn

] 
y1

y2
...

yn


This can be written in the following concise form,

[box = ] align∗wT = (DTD)−1DTy

where D is the matrix made by stacking the sample vectors xi,

D .
=


x1

x2
...

xn

 =


1 x1

1 x2
...

...
1 xn


and y is the column vector made by stacking the observations yi,

y .
=


y1

y2
...

yn


A sketch of the derivation using matrices is given in the following
section for those who cringed at the sentence “This derivation can
be tricky in keeping track of all the indices so the details are omit-
ted.” Some familiarity with linear algebra will also be helpful going
through the following derivation.
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Linear Algebra Derivation

We can write the error function E as the squared norm of the matrix
difference ε = y−DwT .

E(w) = ‖y−DwT‖2 = ‖DwT − y‖2

Differentiating with respect to w, the two comes down from the
exponent by the power rule, and we multiply by DT to account for
the chain rule. We get

∇E = 2DT(DwT − y)

We set ∇E = 0 (we use a bold “0” since it is actually a vector of
zeros) so that

2DT(DwT − y) = 0

Dividing by 2 on both sides and distributing the DT across the differ-
ence gives

DTDwT −DTy = 0

Adding DTy to both sides gives

DTDwT = DTy

Multiplying on the left by the inverse of the matrix DTD on both
sides of the above equation finally yields the famous linear regression
formula,

wT = (DTD)−1DTy

Now, assuming salaries are related to college GPAs according to the
relation

Y = w0 + w1X + ε,

we can plug in our GPA for X, and our optimal w0 and w1 to find the
corresponding predicted salary Y, give or take some error ε. Note
that since we chose w0 and w1 to minimize the errors, it is likely that
the corresponding error for our GPA and predicted salary is small
(we assume that our (GPA, Salary) pair come from the same “true”
distribution as our samples).

Generalization

Our above example is a simplistic one, relying on the very naive as-
sumption that salary is determined solely by college GPA. In fact
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there are many factors which influence someones salary. For ex-
ample, earnings could also be related to the salaries of the person’s
parents, as students with more wealthy parents are likely to have
more opportunities than those who come from a less wealthy back-
ground. In this case, there are more predictors than just GPA. We
could extend the relationship to

Y = w0 + w1X1 + w2X2 + w3X3 + ε

where X1, X2, and X3 are the GPA, Parent 1 salary, and Parent 2

salary respectively.
By now it is clear that we can extend this approach to accomo-

date an arbitrary number of predictors X1, . . . , Xd by modifying the
relationship so that

Y = w0 + w1X1 + w2X2 + · · ·+ wdXd + ε

or more concisely,

Y = X · w + ε

where the vectors X, w ∈d+1 are the extensions

X .
= (1, X1, X2, . . . , Xd)

w .
= (w0, w1, w2, . . . , wd)

the parameters wi can be thought of as “weights” since the larger
any particular weight is, the more influence its attached predictor
has in the above equation. Recall that in Exercise 6.1, we verified the
function f (w) = X · w was linear in the vector w ∈2. In fact, when we
extend w to be a vector in d+1, the function f (w) = X · w is still linear
in w.

The linear regression formula still holds, i.e. that the optimal
weights are given by

wT = (DTD)−1DTy

where the matrix D is still constructed by stacking the observed
samples,

D .
=


x1

x2
...

xn

 =


1 x(1)1 x(2)1 . . . x(d)1

1 x(1)2 x(2)2 . . . x(d)2
...

1 x(1)n x(2)n . . . x(d)n


where the ith sample is written

xi
.
= (1, x(1)i , x(2)i , . . . , x(d)i )
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Correlation

Throughout the past chapters, we often made the assumption that
two random variables are independent in various exercises and meth-
ods. In reality, most random variables are not actually independent.
In this section we give some measures to quantify how “related” a
collection of random variables are.

The example in the Linear Regression chapter began with the ob-
servation that GPAs are positively correlated with future salaries.
That is, we assumed that as college GPA increased, future salary also
increased. Qualitatively, this was enough to motivate the problem of
regression. However, there were other predictors that contributed to
the future salary, some of which were also positively correlated to
the projected salary. The fact that some variables contributed “more
positively” than others was manifested in the size of the weights that
were attached to the variables in the equation Y = X · w + ε. If one
Xi were more predictive of Y than another, then its corresponding
weight was larger. In the following section we examine the covari-
ance of two random variables, which is another attempt to quantify
the relationship between random variables.

Covariance

Suppose we have two random variables X and Y, not necessarily
independent, and we want to quantify their relationship with a num-
ber. This number should satisfy two basic requirements.

(a) The number should be positive when X and Y increase/decrease
together.

(b) It should be negative when one of X or Y decreases while the
other increases.

Consider the following random variable.

(X− EX)(Y− EY)

Consider the possible realizations of the random variables X = x and
Y = y. The collection of these pairs is the sample space Ω. We can
think of the outcomes of sampling an X and a Y as pairs (x, y) ∈ Ω.
Suppose the probability distribution governing X and Y on Ω assigns
most of the probability mass on the pairs (x, y) such that x > EX
and y > EY. In this case, the random variable (X − EX)(Y − EY)
is likely to be positive most of the time. Similarly, if more mass were
placed on pairs (x, y) such that x < EX and y < EY, the product
(X − EX)(Y − EY) would be a negative number times a negative
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number, which means it would still be positive most of the time.
Hence the product (X − EX)(Y − EY) being positive is indicative of
X and Y being mutually more positive or mutually more negative.

By similar reasoning, the product (X − EX)(Y− EY) is more often
negative if the distribution assigns more mass to pairs (x, y) that have
x < EX and y > EY, or that satisfy x > EX and y < EY. In either
case, the product (X − EX)(Y − EY) will be a product of a positive
and negative number, which is negative.

We are almost done. Remember at the beginning of this discus-
sion we were searching for a number to summarize a relationship
between X and Y that satisfied the requirements (a) and (b). But
(X − EX)(Y − EY) is a random variable, (that is, a function map-
ping Ω to ) not a number. To get a number, we take the expectation.
Finally we arrive at the definition of covariance.

Definition 0.0.19. The covariance of two random variables X and Y,
written Cov(X, Y), is defined

Cov(X, Y) = E[(X− EX)(Y− EY)]

This definition may look similar to the definition for variance of a
random variable X, except we replace one of the terms in the product
with the difference Y − EY. Similar to Proposition 2.11 (c), there is
another useful form of the covariance.

Proposition 0.0.3. Let X and Y be two random variables with means EX
and EY respectively. Then

Cov(X, Y) = E[XY]− E[X]E[Y]

Proof. By the definition of covariance, we can foil the product inside
the expectation to get

Cov(X, Y) = E[XY− XEY−YEX + EXEY]

= E[XY]− E[XEY]− E[YEX] + E[EXEY] (linearity of E)

= E[XY]− EYEX− EXEY + EXEY (linearity of E)

= E[XY]− EXEY

The Correlation Coefficient

The covariance quantity we just defined satisfies conditions (a) and
(b), but can become arbitrarily large depending on the distribution
of X and Y. Thus comparing covariances between different pairs of
random variables can be tricky. To combat this, we normalize the
quantity to be between −1 and 1. The normalized quantity is called
the correlation, defined below.
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Definition 0.0.20. The correlation coefficient between two random
variables X and Y with standard deviations σx and σy, is denoted ρ and is
defined

ρxy =
Cov(X, Y)

σxσy

Exercise 0.0.6. Verify that for given random variables X and Y, the correla-
tion ρxy lies between −1 and 1.

Heuristic. The rigorous proof for this fact requires us to view X and
Y as elements in an infinite-dimensional normed vector space and ap-
ply the Cauchy Schwartz inequality to the quantity E[(X − EX)(Y −
EY)]. Since we haven’t mentioned any of these terms, we instead try
to understand the result using a less fancy heuristic argument.

Given a random variable X, the first question we ask is,

What is the random variable most positively correlated with X?

The random variable that correlates most positively with X should
increase exactly with X and decrease exactly with X. The only random
variable that accomplishes this feat is X itself. This implies that the
correlation coefficient between X and any random variable Y is less
than that between X and itself. That is,

ρxy ≤ ρxx =
Cov(X, X)

σxσx
=

Var(X)

Var(X)
= 1

By now you’ve probably guessed the second question we need to ask.

What is the random variable least positively correlated with X?

In other words, we are looking for a random variable with which
the correlation between X and this random variable is the most neg-
ative it can be. This random variable should increase exactly as X
decreases, and it should also decrease exactly as X increases. The
candidate that comes to mind is −X. This would imply that the cor-
relation coefficient between X and any random variable Y is greater
than that between X and −X.

This implies that

ρxy ≥ ρx,−x =
Cov(X,−X)

σxσ−x

By Proposition 6.3, the expression on the right becomes

=
E[X(−X)]− E[X]E[−X]√

Var(X)
√

Var(−X)
=
−(E[X2]− (EX)2)

Var(X)
=
−Var(X)

Var(X)
= −1

Hence, we conclude that −1 ≤ ρxy ≤ 1.
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Interpretation of Correlation

The correlation coefficient between two random variables X and
Y can be understood by plotting samples of X and Y in the plane.
Suppose we sample from the distribution on X and Y and get

Sample = {(X1, Y1), . . . , (Xn, Yn)}

There are three possibilities.
Case 1: ρxy > 0. We said that this corresponds to X and Y increas-

ing mutually or decreasing mutually. If this is the case, then if we
took n to be huge (taking many samples) and plotted the observa-
tions, the best fit line would have a positive slope. In the extreme case
if ρxy = 1, the samples (Xi, Yi) would all fall perfectly on a line with
slope 1.

Case 2: ρxy = 0. This corresponds to X and Y having no observable
relationship. However, this does not necessarily mean that X and Y
have no relationship whatsoever. It just means that the measure we
are using the quantify their relative spread (the correlation) doesn’t
capture the underlying relationship. We’ll see an example of this
later. In terms of the plot, the samples (Xi, Yi) would look scattered
on the 2 plane with no apparent pattern.

Case 3: ρxy < 0. We said that this case corresponds to one of X
or Y decreasing while the other increases. If this were the case, then
the best fit line is likely to have a negative slope. In the extreme case
when ρxy = −1, all samples fall perfectly on a line with slope −1.

Independence vs Zero Correlation

There is a commonly misunderstood distinction between the follow-
ing two statements.

1. “X and Y are independent random variables.”

2. “The correlation coefficient between X and Y is 0.”

The following statement is always true.

Proposition 0.0.4. If X and Y are independent random variables, then
ρxy = 0.

The converse is not. That is, ρxy = 0 does not necessarily imply that
X and Y are independent.

In “Case 2” of the previous section, we hinted that even though
ρxy = 0 corresponded to X and Y having no observable relationship,
there could still be some underlying relationship between the random
variables, i.e. X and Y are still not independent. First let’s prove
Proposition 6.6
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Proof. Suppose X and Y are independent. Then functions of X and Y
are independent. In particular, the functions

f (X)
.
= X− EX

g(Y) .
= Y− EY

are independent. By the definition of correlation,

ρxy =
Cov(X, Y)

σxσy

=
E[(X− EX)(Y− EY)]

σxσy

=
E[ f (X)g(Y)]

σxσy

=
E[ f (X)]E[g(Y)]

σxσy
(independence of f (X) and g(Y))

=
0 · 0
σxσy

(E[ f (X)] = E(X− EX) = 0)

= 0

Hence if X and Y are independent, ρxy = 0.

Now let’s see an example where the converse does not hold. That
is, an example of two random variables X and Y such that ρxy = 0,
but X and Y are not independent.

Example 0.0.11. Suppose X is a discrete random variable taking on values
in the set {−1, 0, 1}, each with probability 1

3 . Now consider the random
variable |X|. These two random variables are clearly not independent, since
once we know the value of X, we know the value of |X|. However, we can
show that X and |X| are uncorrelated. By the definition of correlation and
Proposition 6.3,

ρx,|x| =
E(X · |X|)− EX · E|X|

σxσ|x|
(6)

Let’s compute the numerator. By looking at the distribution of X, we can see
that the product X · |X| can only take on three possible values. If X = 0,
then |X| = 0 so X · |X| = 0. If X = −1, then |X| = 1 and X · |X| = −1.
Finally if X = 1, then |X| = 1 and X · |X| = 1. Each of these cases occur
with probability 1

3 . Hence,

X · |X| ∼ Uniform{−1, 0, 1}

It follows that the expectation of X · |X| is

E(X · |X|) = 1
3
· (−1) +

1
3
· (0) + 1

3
· (1) = 0.
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Also by the definition of expectation,

E[X] =
1
3
· (−1) +

1
3
· (0) + 1

3
· (1) = 0.

Plugging these values into the numerator in expression (3), we get ρx,|x| =

0. Thus, the two random variables X and |X| are certainly not always equal,
they are not independent, and yet they have correlation 0. It is important to
keep in mind that zero correlation does not necessarily imply independence.
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